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Abstract| This paper describes data structures and al-

gorithms for the representation of Boolean functions with re-

duced ordered binary decision diagrams (ROBDDs). A hash

table is used for quick search. Additional information about

variables and functions is stored in binary trees. Manipula-

tions on functions are based on a recursive algorithm of ITE

operation. The primary goal of this article is to describe

programming technics needed to realize the idea. For the

�rst time here recursive algorithms for composing functions

and garbage collection with a formulae counter are presented.

This is better than garbage collection in other known imple-

mentations. The results of the tests show that the described

representation is very e�cient in applications which operate

with Boolean functions.

1 Introduction

Boolean functions are a frequent form of data in computer science.
E�ciency of algorithms for operations involving Boolean functions
depends on data structure used for the representation. Smaller
problems can be solved by hand using truth table, Karnaugh's
diagram, Veitch's diagram or disjunctive or conjunctive normal
form. But these representations are not suitable for problem solv-
ing by computer because space and time grow exponentially with
the number of variables for the majority of common functions.

The most common problems are equivalence testing and
tautology checking. It is easy to solve both problems if the repre-
sentation of Boolean functions constitutes a canonical form. This
means that every function has only one representation and two
di�erent functions have two di�erent representations.

Binary decision diagram (BDD) is a very good data struc-
ture for the representation of Boolean functions in computer.
Space and time complexity are exponential in the worst case, but
in most cases they are very reduced. In a BDD, a function is
represented recursively with triples (xi; f jxi=1; f jxi=0), which are a
consequence of Shannon's decomposition theorem :

f = xi � f jxi=1 + xi � f jxi=0 (1)

Algorithms for creating BDDs and algorithms for manipulating
functions represented by BDDs have advanced considerably from
the beginning studies [1]. The shortcomming of BDDs not be-
ing a canonical form for the representation of Boolean functions
was removed with an upgrade to reduced ordered binary decision
diagrams (ROBDDs) [2]. Algorithms for operations with ROBDDs
are recursive and they are derived from Shannon's decomposition
theorem (1).

Time and space complexity of ROBDDs depend on variable
ordering. A simple reordering of variables alone may result in the
reduction of the size of the diagram or vice versa. Determining the
optimal variable ordering is unfortunately a NP problem. Usually,
simple reordering is good enough. This paper, however, is not
concerned with this kind of problems.

2 De�nitions

A number of terms whose meaning has already been de�ned in [3]
are used in the paper.

A hash table is a data structure in which a lot of data are
stored and can be found or checked very quickly [4, 5].

A hash table with chaining is an array of lists. Every element
has an exactly determined list of which it makes a part. The list is
computed from the element by a hash function. In searching for an
element the list number should be computed and the corresponding
list for the element checked. We term the hash table with chaining
simply hash table.

A hash-based cache is an array. Every element has an exactly
determined �eld in the array. The �eld is also computed from an
element by a hash function. A hash function maps more elements
into the same �eld. Only one element is stored, others are lost. In
searching for an element, we should �rst check if an element exists
in the �eld. Afterwards it should be checked if it is the rigth one.

A binary decision diagram (BDD) is a directed, acyclic
graph. It includes sink nodes `0' and `1', which represent constant
Boolean functions 0 and 1. These nodes have no descendants. All
other nodes include a variable and two edges to the descendants|
subgraphs. The edges are labeled by `then' and `else'. Every path
through the graph �nishes in one of the sink nodes. The result of
the function, represented by BDD, is computed simply by travel-
ling through the graph. In every node corresponding subgraph is
chosen. It depends on the truth value of the variable. The value
of the function is determined by the sink node that ends the path.

An ordered binary decision diagram (OBDD) is a BDD
where all variables are ordered on previously known ordering and
every path visits variables in an ascending order.

A reduced ordered binary decision diagram (ROBDD) is an
OBDD where any two nodes di�er from each other. Functions
share ROBDD. So every node can belong to more functions.
Therefore it can be also termed a shared binary decision diagram
(SBDD) [6].

A possible extension of ROBDD is the introduction of com-
plement edges. Every edge has an additional �eld (a single bit
is su�cient) which tells us whether it is a regular or a comple-
ment edge. Changing the edge from regular to complement and
vice versa is called complementing the edge. A complement edge
complements the function that follows. There is no need to keep
the sink node `0' in the graph. It is replaced by the complement
edge to the node `1'. The value of the function is computed by
travelling through the graph down to the sink node and counting
complement edges. An odd number of complement edges means
that the result is 0 and an even number means that it is 1. To
maintain a canonical form, the `then' edge must be regular in every
node. We name this kind of node a regular node.

Three representations of the same function are shown in
Figure 1.1

The If-Then-Else or ITE is a three-variable Boolean opera-

1In �gures the `then' edge leaves a node on the bottom-right and `else' edge
on the bottom-left side. A bullet denotes the complement edge.
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c) ROBDD with complement edges

Figure 1: Three representations of the function a � c+ a � b � c + b � c

tor, de�ned as :

ITE(f; g; h) = f � g + f � h : (2)

With ITE, all two-variable Boolean operations can be implemented
(see Table 1). Shannon's decomposition theorem (1) can be shortly
written as f = ITE(xi; f jxi=1; f jxi=0), and therefore it forms a basic
operation in BDD.

3 Implementation

3.1 Notation

Variables are denoted by lowercase letters and functions by upper-
case ones.

Every edge in the ROBDD represents one Boolean function.
The edge which represents function F is named an input edge of
function F . When we operate with function F , we actually operate
with its input edge. Capital letters, which represent functions
in formulae and algorithms, in fact also denote input edges of
corresponding functions. Every input edge leads to a top node of
the function. A variable in top node is named a top variable of the
function. The top variable of a set of functions is the smallest of
the top variables of those functions.

Every node is a top node of functions F and of F with the
regular and the complement input edge, respectively.

Each node can be denoted by the triple (v; G;H)|the node
is fully decribed by variable v and functions G and H for its `then'
and `else' descendants, respectively. Expression F = (v; G;H)
means that the node (v; G;H) is the top node of the function F .

A function known to the user is named a formula. Formulae
are denoted by capital letters like all other functions. All nodes
included in a formula are called internal nodes.

3.2 Basic Data Structures

3.2.1 Unique-Table

Before adding a new node (v; G;H) into the ROBDD, we have to
check if such a node already exists. If it exists, it is used instead of
creating a new one. In this way functions share the same ROBDD
(di�erent functions include the same node or subgraph). This
characteristic reduces the memory space needed. For checking the
existence of a node, we need a data structure in which nodes can
be accessed quickly. We use a hash table with chaining and name
it the unique-table. A su�ciently e�cient hash function is simply
the sum of the parameters (pointers) modulo table size.

3.2.2 Computed-Table

E�ciency of ite function can be increased by the introduction of
the computed-table. Computed-table is a data structure which
remembers parameters F , G, H and the result ite(F;G;H) at
every call of ite. At the next call of ite with the same parameters
we simply read the result without any computing. Searching for
results in the table must be e�cient because they are searched at
every call of ite. It is not necessary to keep all the results in the
table. Therefore it is better to avoid a dynamic data structure,
although in this case it may happen that we discard a result and
have to compute it later on again. So we use hash-based cache. An
e�cient hash function is again simply the sum of the parameters
modulo table size.

3.2.3 Symbol Tree

If we want to evaluate the function, we need a data structure
which includes the variable name and its Boolean value. Because
one variable appears several times in one graph, a separate data
structure is the best solution. Instead of a variable in each node
there is a pointer to the �eld in this data structure, where the name
and the value of the variable are actually stored. The realization
without pointers uses indices instead. This is a very good solution,
because in the separate structure supplementary information can
be stored. This data structure is named the symbol tree because
a binary tree is used for the realization.

A node with variable v and descendants 0 and 1 is needed
very often. This node is named basic node of the variable v. Edges
to basic nodes are also stored in the symbol tree, so that it is not
necessary to look for them again every time.

3.2.4 Formulae Tree

The manipulation of several formulae at the same time calls for a
data structure where the formula name and its input edge will be
stored. For this purpose we also use a binary tree and we name it
a formulae tree.

3.3 Normalization

Each triple (F;G;H) belongs to one class of triples. For ar-
bitrary triples (Fi; Gi; Hi) and (Fj; Gj; Hj) in a class either

ite(Fi; Gi; Hi) = ite(Fj ; Gj; Hj) or ite(Fi; Gi; Hi) = ite(Fj; Gj; Hj)
is valid. So all triples in a class are equivalent with regard to ite.
It is enough if only one triple from each class is stored. We have
named this triple a standard triple. Before searching in computed
table, the corresponding standard triple must be formed. We have
named this procedure the normalization. Note that normalization

2



e�ectively prevents unnecessary computing owing to commutati-
vity and DeMorgan's laws.

It has been proved that in every class there exists one triple
which has functions with regular input edges for arguments F and
G. If this triple is used as a standard triple, then only one mark
must be stored in the computed-table| whether input edge of H
is regular or not (see data structure in appendix A). The algorithm
for this kind of normalization is resumed from [3].

� First, if it is possible, input arguments are simpli�ed :

ite(F; F;G) =) ite(F; 1; G)
ite(F;G; F ) =) ite(F;G; 0)

ite(F;G; F ) =) ite(F;G; 1)
ite(F; F ;G) =) ite(F; 0; G).

� Between the triples which form one of the following patterns,
one from the corresponding pair should be chosen :

ite(F; 1; G) = ite(G; 1; F )
ite(F;G; 0) = ite(G;F; 0)
ite(F;G; 1) = ite(G;F; 1)
ite(F; 0; G) = ite(G; 0; F )
ite(F;G;G) = ite(G;F; F ).

The triple which has a function with the smallest top variable
for the �rst argument is selected. Note that addresses of nodes
must be compared as these are di�erent for every single node.
If edges are pointers then the address is simply the value of
the input edge.

� Finally, one of the following four forms is chosen :

ite(F;G;H) = ite(F ;H;G) = ite(F;G;H) = ite(F ;H;G) :

A triple is chosen according to the rule that the �rst and the
second argument should be functions with regular input edge.
The algorithm for this part of normalization is presented as
Algorithm 1. Sometimes we get complemented results from
the computed-table. This happens if variable result gets value
FALSE.

result := TRUE;
if F:complement then begin

F:complement := FALSE;

if H:complement then begin

result := FALSE;

swap and complement edges G and H

end

else swap edges G and H

end

else if G:complement then begin

G:complement := FALSE;

result := FALSE;
complement edge H

end;

Algorithm 1: Third step of normalization

3.4 Algorithm of ite Function

Building of a ROBDD is done with the ite function. It is presented
as Algorithm 2. Let v be the top variable of functions F , G and
H. Let Fv and Fv denote functions F jv=1 and F jv=0, respectively.
Then the following recursive formula can be derived2:

ite(F;G;H) = ite(v; ite(Fv; Gv; Hv); ite(Fv; Gv; Hv)) : (3)

Recursion proceeds until one of terminal calls occurs :

ite(F; 1; 0) = ite(1; F; G) = ite(0; G; F ) = ite(G;F; F ) = F ;

ite(F; 0; 1) = F :

function ite(F;G;H : EdgeType) : EdgeType;

begin

execute the �rst step of normalization;

if terminal case then return result

else begin

execute the second and the third step of normalization;

if result is in the computed-table then return result

else begin

let v be the top variable of functions F , G and H;

T := ite(Fv; Gv; Hv);
E := ite(Fv; Gv; Hv);
if T = E then ite := T ;

R :=�nd or add node(v; T; E);
insert in computed-table(F;G;H;R);
ite := R

end

end

end;

Algorithm 2: Recursive algorithm of ite function

Function �nd or add node creates new nodes. It takes a
node (v; T; E) for an argument and returns the edge pointing to
that node as a result. If and only if the needed node does not
exist, the function creates a new one. In a ROBDD with comple-
mented edges, only the nodes which have regular `then' edge are
valid (see Section 2). Function �nd or add node takes care of this
itself. If an invalid node is claimed, then the request is transformed
into the equivalent, valid form as shown in Figure 2. During the
transformation the edge leading to the node is complemented.
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Figure 2: Transformation into valid form

4 Operations on ROBDD

4.1 Boolean Operations

All two-variable operations can be realized by the ITE operator, as
shown in Table 1. A function can be complemented in a simplier
way by complementing its input edge.

2See derivation in appendix B.1.
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Table Name Expression Equivalent form

0000 0 0 0

0001 f and g f � g ITE(f; g; 0)

0010 f > g f � g ITE(f; g; 0)

0011 f f f

0100 f < g f � g ITE(f; 0; g)

0101 g g g

0110 f xor g f � g ITE(f; g; g)

0111 f or g f + g ITE(f; 1; g)

1000 f nor g f + g ITE(f; 0; g)

1001 f xnor g f � g ITE(f; g; g)

1010 not g g ITE(g; 0; 1)

1011 f � g f + g ITE(f; 1; g)

1100 not f f ITE(f; 0; 1)

1101 f � g f + g ITE(f; g; 1)

1110 f nand g f � g ITE(f; g; 1)

1111 1 1 1

Table 1: All two-variable functions realized with ITE

4.2 Composition of Functions and Evaluation

of Restricted Function

A composition of functions (f jxi=g) is an operation that assigns a
multi-variable function to a variable.

Let v be a top variable of function f . Let fv and fv denote
functions f jv=1 and f jv=0, respectively. The following recursive
formula shows how to compute the composition3 :

f jxi=g =

8<
:

f ; v > xi
ITE(g; fv ; fv) ; v = xi
ITE(v; fvjxi=g; fvjxi=g) ; v < xi

(4)

A special case of composition is restriction : f jv=0 or f jv=1. The
algorithm for restriction is very similar to that for composition. In
practice, one algorithm (for composition) is good enough for both
operations.

function Compose(f : EdgeType; x :WordType; g : EdgeType) :

EdgeType;
begin

if f is a constant function then Compose := f

else begin

let v be the top variable of function f ;
if v > x then Compose := f

else

if v = x then

Compose := ite(g; fv; fv)

else

Compose := ite(v; Compose(fv; x; g); Compose(fv; x; g))

end

end;

Algorithm 3: Algorithm for composition of functions

5 Garbage Collection

Computers have limited memory and they run out of it quickly. To
avoid this problem, nodes that are unnecessary should be removed.

3See derivation in appendix B.2.

We named the procedure which performs this function garbage
collection (GC).

Even if memory is not completely full, GC is very useful. A
smaller number of nodes means faster operations on BDDs. How-
ever, some extra time is spent on GC. For an e�ective GC addi-
tional information about each node is needed. Unfortunately, this
increases the usage of memory. Therefore, a more frequent GC,
which is faster, is preferable.

GC deletes all nodes which are not part of any formula. If
the user wants, a complete formula can be removed, too. Internal
nodes of other formulae must not be deleted by this operation.

Note that all records in the computed-table which contain
bad node must be removed before deleting bad nodes from the
unique-table.

5.1 Garbage Collection with a Reference

Counter

This algorithm was presented in [3]. Each node has a count of the
number of other nodes and the number of user formulae that re�er
to it. A node with a reference count of 0 is called dead node.

When a formula is deleted, the reference count of the cor-
responding top node is decremented by 1. If the new reference
count is 0, then the reference counts of successor nodes are recur-
sively decremented. If any of them becomes a dead node, recursion
continues there.

It can happen that an existing node which is already dead
should be included into the formula. In this case the reference
count of this node and of all dead descendants are incremented
by 1. In recursion it should be considered that all successors of a
non-dead node are non-dead nodes.

The procedure for GC removes all dead nodes.
An advantage :

� Less additional information is needed.

Drawbacks :

� GC can not be activated while the formula is being created.

� The reference counter can not distinguish between a reference
from an internal node of a formula and from a dead prede-
cessor node. Therefore, GC removes only a portion of nodes
which are not internal nodes of any formula.

5.2 Garbage Collection with a Formulae

Counter

GC is the most e�ective if all unnecessary nodes are removed.
These are above all the nodes which are not internal nodes of any
formula. As GC with a reference counter does not enable us to do
this, we propose a di�erent approach.

There are three kinds of nodes in the ROBDD when GC is
started. Those that do not belong to any formula may be deleted.
We named them bad nodes. The nodes that belong to one or more
formulae must remain. We named them forti�ed nodes. The third
kind of nodes are those that could be possibly included into the
formula which is currently being built. These are fresh nodes and
GC may not remove them.

Formulae are numbered by the formulae counter as 1, 2, 3,
etc. Every node has a �eld named mark. It is an unsigned number
and tells us the kind of a node. Forti�ed nodes have mark 0. Fresh
nodes have mark that is equal to the current value of the formulae
counter. Any other mark means bad node. It always holds that all
descendants of forti�ed nodes are also forti�ed and all descendants
of a fresh node can not be bad.
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We named the recursive procedure which sets mark in each
internal node of the formula to 0 formula fortifying. A similar
procedure which changes a bad node and all its bad descendants
to fresh ones is named node refreshing.

When a new node is created, it gets mark which is equal to
the current value of the formula counter. Forti�ed and fresh nodes
which are included into the formula remain unchanged. But bad
nodes which are included must be refreshed. When the whole
formula is built, it has to be forti�ed.

To avoid checking all nodes in every call for GC we create a
list of new nodes. Whenever a new node is created, it is included
into this list. Nodes must be added to the end. The list requires
a supplement �eld in every node.

GC examines the list of new nodes. All bad nodes are de-
leted, all forti�ed nodes are removed only from the list, and all
fresh nodes remain unchanged both in the unique-table and in the
list. It is not even necessary to look over the whole list, as from an
element forward to the end the list contains only fresh nodes. This
element is marked by a pointer. Whenever the formulae count is
incremented, this pointer is transfered to the end of list.

Note that all lists in the unique-table must be linked in both
directions, because lists linked only in one direction do not enable
deleting without knowing a predecessor.

There is an extra procedure for removing complete formulae.
First, all nodes are changed to bad ones. All formulae which re-
main are then forti�ed. And at the end, all bad nodes are deleted.
It is better to remove more formulae at once. As this operation
would at the same time remove all fresh nodes, it is impossible to
perform it during the creation of a formula. However, this is not
a problem, because deleting during creating is never used.

A list of new nodes e�ectively detects unnecessary calls of
GC (two calls successively, two calls during creation of the same
formula).

A list of free nodes is used to improve GC. It reduces the
number of memory reservation requirements that would appear by
the creation of each new node. When a node is removed, it is put
into this list and not deleted. When a new node is to be created,
we do not allocate a new memory space for it, but simply use an
existent spare place in the list of free nodes if it is not empty. Note
that this improvement does not require any additional information
in a node.
Advantages :

� GC is fast.

� GC does not disturb other operations. We can start it at
any time and after its termination continue the interrupted
operation.

� GC removes all unnecessary nodes.

Drawbacks :

� More supplementary information about nodes is required.

� Because of keeping the list of new nodes, creation of new nodes
is more time consuming.

6 Experimental Results

6.1 Equivalence Testing

Boolean functions represented with ROBDDs are useful in many
computer applications. Our software is applied for testing equi-
valence of digital circuits. This application �ts in the previous
research in the domain of formal veri�cation [7, 8]. We have

two circuits with the same inputs and equal number of outputs.
Input variables are denoted by I1; I2; . . . ; In, outputs from the
�rst circuit by O11; O12; . . . ; O1m and from the second one by
O21; O22; . . . ; O2m. The problem is stated as follows: given all
output functions in the form

Oki = Fki(I1; I2; . . . ; In); k = 1; 2; i = 1; 2; . . . ; m ;

determine if outputs from both circuits are equal or, more formally,
if

O1i = O2i; i = 1; 2; . . . ; m :

Equivalence testing can be limited to a set of input combinations.
In that case there is also a function which denotes when the equi-
valence is not important (don't care set|dcs). If this function is
denoted by D(I1; I2; . . . ; In), then the equivalence is relevant only
for those input combinations, where D = 0.

Digital circuits are described in .BE format [9] in �les, which
have been used on IMEC-IFIP International Workshop on Applied
Formal Methods For Correct VLSI Design in Houthalen, Belgium,
November 1989. Every �le contains a pair of circuits which have
to be compared. A reader will �nd more information about these
�les in [9].

6.2 Measuring

Equivalence testing has to be �nished as soon as possible and with
a su�cienly small usage of memory. Our program is written in Pas-
cal on VAX 4000{600 (see technical data in 6.3). Measurements
are carried out on benchmark tests described in [9]. Results are
shown in Table 2.

The CPU time includes time spent for reading and checking
input �le, forming the ROBDD and equivalence testing for all
outputs.

6.2.1 What Have We Measured ?

First we have performed measurements on original �les without
any previous changes. We have used alphabetical variable order-
ing. These results are in the third column in Table 2. Then we
have renamed variables using the principle \the most often used
variable gets the smallest name". New �les were created for the
new ordering, and this is not comprised in the presented times.
For some circuits (typical is add4) reordering signi�cantly decreas-
es the CPU time. On the contrary, for some other circuits (e.g.
mul08) testing takes a little bit more time. Of course our variable
ordering is not optimal. It is only a heuristic approximation of the
optimal one. We have not carried out a detailed research for opti-
mal ordering. As �nding an optimal order is also a NP problem,
it is questionable if it is worth doing it at all.

6.2.2 Parameters by Realization of the ROBDD

We have tested many combinations of parameters. We have been
interested in :

� the size of the unique-table (is it better to have a large or a
small one);

� the size of the computed-table (is it better to have a large or
a small one);

� the best time to start GC :

{ when the number of bad nodes exceeds a certain constant
(if it is small, GC will be executed frequently, if it is big
it will be executed rarely),
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Results of Measuring

circuit name
number of alphabetical order reordered

variables time (s) param. time (s) param.

add1 9 0.06 uCg+2 0.05 uCG+3
add2 13 0.24 ucG+2 0.20 ucg+3
add3 21 2.44 ucg+3 0.32 ucg+3
add4 29 298.60 UCg*3 3.63 UCg+3
addsub 29 ..... ..... 0.57 uCg+3
alu 11 0.22 uCg+2 0.15 Ucg+1
ex2 4 0.00 Ucg*1 0.00 ucg+2
mul03 6 0.03 Ucg+1 0.00 UCg*2
mul04 8 0.12 ucG+1 0.09 ucg*3
mul05 10 0.35 ucg+3 0.30 ucg+1
mul06 12 1.23 ucg+3 1.13 ucg+2
mul07 14 5.03 ucg*3 4.17 uCg+3
mul08 16 18.97 uCg+1 16.45 uCg+3
rip02 4 0.01 UCg+3 0.00 UCG+1
rip04 8 0.03 UcG+2 0.03 ucG+1
rip06 12 0.13 ucG+3 0.06 UCG+3
rip08 16 0.69 ucg+3 0.10 ucG+3
transp 4 0.00 uCg*1 0.00 Ucg*3
ztwaalf1 12 0.03 ucG+3 0.04 ucg+1
ztwaalf2 12 0.04 ucG+1 0.04 Ucg+1
alupla20 19 0.11 ucg+1 0.08 uCG+3
alupla21 22 0.19 ucG+3 0.15 ucg+2
alupla22 25 0.46 ucg+3 0.52 ucg+3
alupla23 25 0.76 ucg+3 0.72 ucg+3
alupla24 20 0.24 ucG+1 0.24 ucg+3
dc2 8 0.06 uCG+3 0.06 ucg+3
dk17 9 0.07 UCG+1 0.05 Ucg*3
dk27 10 0.03 uCg*1 0.02 UCg*2
f51m 8 0.06 uCG+2 0.09 ucg+1
misg 56 0.07 uCg+2 0.07 ucG+1
mlp4 8 0.25 ucg*3 0.23 ucg+3
rd73 7 0.09 UcG+3 0.09 ucG+1
risc 8 0.04 UCg+3 0.04 ucg+1
root 8 0.09 UCg+3 0.08 ucg+3
sqn 7 0.07 ucG+3 0.07 ucg*2
vg2 25 0.10 Ucg+3 0.08 ucg*3
x1dn 27 0.12 ucG+2 0.08 ucg+3
x6dn 39 0.58 ucg+3 0.23 ucg+1
z4 7 0.03 Ucg+3 0.03 uCg+1
z5xpl 7 0.07 uCg*3 0.08 Ucg+1
z9sym 9 0.18 ucG+3 0.16 ucg+3
counter 6 0.04 UCg+3 0.05 uCg+1
d3 7 0.88 uCG+1 1.12 ucg+1
hostint1 5 0.03 uCg+3 0.04 uCg+1
in1 15 10.39 ucg+3 8.22 Ucg+3
mp2d 14 0.29 Ucg+3 0.39 ucG+1
mul 7 0.06 uCg+2 0.06 ucg+1
pitch 16 0.97 ucg+1 0.92 ucG+1
rom2 13 1.00 ucg+3 0.40 ucg+1
table 17 0.71 ucg+1 0.56 ucg+2
werner 6 0.01 UCg+3 0.01 uCg+1

Table 2: Results of tautology checking of logic circuits

Legend :
U/u ... unique-table is large/small
C/c ... computed-table is large/small
G/g ... garbage collection is frequent/seldom
+ ... garbage collection is executed when number of

bad nodes exceeds a given value
* ... garbage collection is executed when portion of

bad nodes exceeds a given value
1 ... no elements are overlaid in computed-table
2 ... only bad elements are overlaid in computed-table
3 ... all elements are overlaid in computed-table

{ when a portion of bad nodes exceeds a certain constant
(if it is near to 1, GC will be executed very rarely, and
very often if it is near 0);

� whether elements in the computed-table can overwrite older
ones (never, only bad elements can be overwritten, always).

It is di�cult to say which combination is the best, because
one is good for some circuits and bad for others. This is evident
from the Table 2. However, good combinations have some common
characteristics. We propose the following strategy.

Unique-table should be large. Owing to the use of a list
of new nodes it is hardly ever completely examined. Computed-
table should be small; especially at frequent GC it is not good to
have very large computed-tables. GC must start when the number
of bad nodes exceeds a certain constant. In our tests, activating
GC when a portion of bad nodes exceeded a certain constant did
not turn out well. It remains an open question, when elements in
computed-table overwrite other. The strategy that always over-
writes the elements was a bit better then other two strategies,
perhaps because no additional computing was needed.

6.3 Technical Data

Complete program package and complete measuring have been
carried out with the following equipment :

� 32 bit computer VAX 4000{600, approximately 30 times faster
than VAX 750 ;

� 4 GB address space ;

� physical memory : 128 MB ;

� virtual memory : 525 MB ;

� operating system : VAX/VMS V5.5{2 ;

� programming language : VAX PASCAL V4.4 .

It is necessary to say that all measurings have been done
in \multi user" mode. Therefore computer has simultaneously
executed other processes. At times there have been more than 100
of them. This important di�erence has to be considered when our
results are compared with [6, 10]. Our process has been allowed
to use at most 50 MB out of 128 MB of physical memory and the
whole virtual memory has been shared with other active processes.

7 Conclusions

Best solutions on as to how to represent Boolean functions with
ROBDD are shown. Our representation uses hash table, If-Then-
Else operator and supplementary list for garbage collection. Data
structures are described in detail and their declarations in Pascal
are given in Appendix A. The algorithms used are recursive and
based on Shannon's decomposition theorem (1). Because the same
theorem is the basic idea of the ROBDD, these algorithms are the
most natural and also the most e�cient.

A practical result of our research is a ROBDD programming
package written in Pascal. For each node in the unique-table we
need 36 bytes and for each record in the computed-table 28 bytes.
Due to a compiler, that we have, the type \boolean" spent the
whole 32 bits (1 longword) instead of only 1, that would be other-
wise needed. We have written some di�erent parsers for various
forms of �les (pre�x and in�x form of functions). Our practical
results con�rm that ROBDD is the best data structure for such
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problems. Results are similar to those by other authors [10, 6] and
in most cases even better.

Finally we suggest possible improvements. The meaning of
marks by complemented edges can be changed. In [6] the usage of
input inverters is described. By this method a complement edge
means complementing variable in the node (it is di�erent from
complementing the whole function that follows). Input inverters
have similar characteristics as our marks. It depends on a function
whether input inverters or complement edges are better.

Instead of one, there could be more sink nodes. Each of
them would contain a small truth table. They would represent
simple functions of few variables. Therefore it would be not neces-
sary to create these functions and we would save time. In this case
truth tables would also need less space than equivalent ROBDDs.
Truth tables would be used like any other node.

The presented results show that time and space complexity
depend heavily on variable ordering. Therefore greater improve-
ments can be achieved with algorithms for optimal ordering of
input variables.

A Data Structures in Pascal

type UniqueTablePtr =
^

UniqueTableType;

SymbolTreePtr =
^

SymbolTreeType;

FormulaeTreePtr =
^

FormulaeTreeType;

EdgeType = record fcomplement edgeg
pointer : UniqueTablePtr ;
complement : boolean

end;

UniqueTableArray = array [0 ..size] of UniqueTablePtr ;

UniqueTableType = record

pred, succ : UniqueTablePtr ;
flinked list in both directionsg

variable : SymbolTreePtr ;
finformation about variable in the nodeg

e, t : EdgeType;
f`else' and `then' edge from the nodeg

mark : integer ;
fmark is used by garbage collectiong

list : UniqueTablePtr flist of new nodesg
end;

ComputedTableType = record

F, G, H : UniqueTablePtr ; finput parameters to iteg
Hmark : boolean; fmark of parameter Hg
result : EdgeType fresult of iteg

end;

ComputedTableArray = array [0 ..size] of
ComputedTableType;

SymbolTreeType = record

left, right : SymbolTreeType;
fdescendants in binary treeg

name : EdgeType; fvariable nameg
value : boolean; flogic value of variableg
basic : EdgeType fbasic edge of variableg

end;

FormulaeTreeType = record

left, right : FormulaeTreePtr ;
fdescendants in binary treeg

name : WordType; fformula nameg
input : EdgeType finput edgeg

end;

B Derivations of some Formulae

B.1 Recursive Formula of ITE Operation

There are functions F , G, H and we want to compute
T = ITE(F;G;H). Let v be the top variable of F , G and H. We
can write

T = v � Tv + v � Tv :

Considering formula (2), T can be replaced by

T = v � (F � G + F �H)v + v � (F � G + F �H)v :

Because distributivity law is valid for computing of restricted func-
tion, we can continue with

T = v � (Fv �Gv + F v �Hv) + v � (Fv � Gv + F v �Hv) :

Considering formula (2) again, but in the opposite direction, we
get

T = v � ITE(Fv; Gv; Hv) + v � ITE(Fv; Gv; Hv) :

After applying the same formula to the entire expression we obtain
the �nal result

T = ITE(v; ITE(Fv; Gv; Hv); ITE(Fv; Gv; Hv)) :

We can summarize that

ITE(F;G;H) = ITE(v; ITE(Fv; Gv; Hv); ITE(Fv; Gv; Hv)) ;

where v is the top variable of formulae F , G and H. Therewith,
formula (3) is derived.4

B.2 Recursive Formula of Compose Function

There are functions F and G and a variable x. We are interested
in F jx=G. Let v be the top variable of function F . We have to
consider three cases :

x < v: Because each function is represented with the ROBDD,
where all variables are ordered (see section 2), variable x does
not exist in function F at all. Therefore, function F does not
depend on x and the result is F , accordingly. We can write

F jx=G = F :

x = v: The result is now either the right (Fv) or the left (Fv)
branch of node v, which depends on function G. So

F jx=G = G � Fv +G � Fv = ITE(G;Fv; Fv) :

x > v: It is always true that

F jx=G = (ITE(v; Fv; Fv))jx=G :

After using distribution law, we get

F jx=G = ITE(v; Fvjx=G; Fvjx=G) :

At the end we can rewrite all three formulae in the single one :

F jx=G =

8<
:

F ; x < v

ITE(G;Fv; Fv) ; x = v

ITE(v; Fvjx=G; Fvjx=G) ; x > v

And that is exactly the formula (4) from section 4.

4This derivation is summarized after [3, page 41].
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